

email: info@bayadesign.co.uk tel:

0800 246 5779

13 Clifton Vale, Bristol. BS8 4PT

Project Summary

Site address: 231 Seafield Road, Bournemouth BH6 5LL

Job: Side Two Storey Extension / Loft

Client: Baya Architects Job number: A01

ITEMS:

1: OLE object: Paint.Picture *

2: OLE object: Paint.Picture *

3: OLE object: Paint.Picture *

4: OLE object: Paint.Picture *

5: Beam: Pitch Roof Rafters @ 400 c/c

Span: 3.25 m.

Reactions (unfactored/factored): R1: 1.90/1.90 kN; R2: 1.90/1.90

kN Use 50 x 175 C24

Double up around roof light

6: Beam: Small Dormer Pitch Roof Rafters @ 400 c/c

Span: 0.84 m.

Reactions (unfactored/factored): R1: 0.49/0.49 kN; R2:

0.49/0.49 kN Use 50 x 100 C24

7: Beam: Stair Trim 1

Span: 2.18 m.

Reactions (unfactored/factored): R1: 3.20/3.20 kN; R2: 2.86/2.86

kN Use 2no 50 x 150 C24

Use 12mm dia. bolts @ 450mm c/c + connectors.

8: Beam: Stair Trim 2 (Each End)

Span: 3.68 m.

Reactions (unfactored/factored): R1: 1.40/1.40 kN; R2: 2.17/2.17 kN

Use 3no 50 x 150 C24

Use 12mm dia. bolts @ 450mm c/c + connectors.

9: Beam: Loft Floor Joists @ 400 c/c

Span: 3.215 m.

Reactions (unfactored/factored): R1: 1.29/1.29 kN; R2: 1.29/1.29 kN

Use 50 x 150 C24

10: Beam: First Floor Joists @ 400 c/c

Span: 3.215 m.

Reactions (unfactored/factored): R1: 1.29/1.29 kN; R2: 1.29/1.29 kN

Use 50 x 150 C24

11: Beam: BM1 Cross Beam Lintel

Span: 2.42 m.

Reactions (unfactored/factored): R1: 20.66/20.66 kN; R2:

20.66/20.66 kN Use 203 x 203 x 46 UC S355

Bearing R1: 8 mm m.s. bearing plate, size 204 x 250 mm

Bearing R2: As R1

email: info@bayadesign.co.uk tel: 0800 246 5779 13 Clifton Vale, Bristol, BS8 4PT

12: Beam: BM2 Cross Beam Lintel

Span: 2.73 m.

Reactions (unfactored/factored): R1: 23.30/23.30 kN; R2: 23.30/23.30

kN Use 203 x 203 x 46 UC S355

Bearing R1: 8 mm m.s. bearing plate, size 204 x 250 mm

Bearing R2: As R1

5mm steel plate fillet welded to top flange full length and width if brick wall has a cavity.

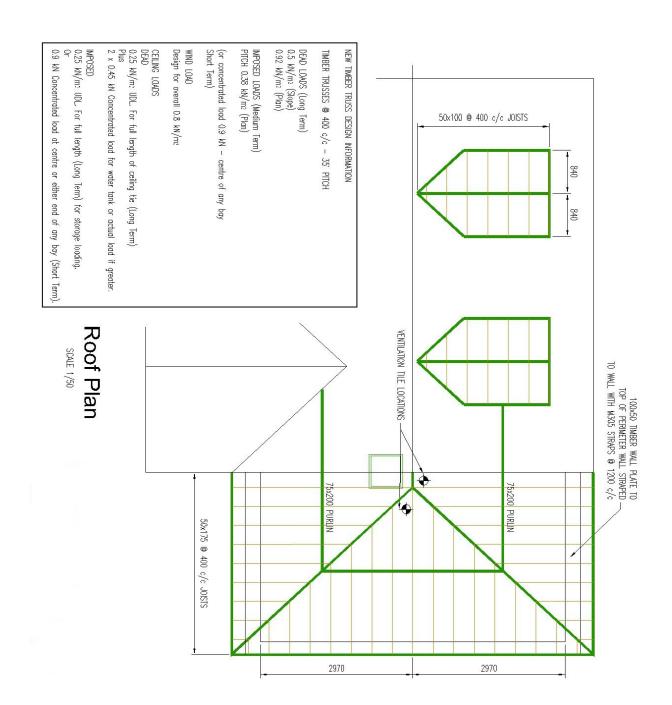
13: Beam: BM3 Cross Beam

Span: 3.315 m.

Reactions (unfactored/factored): R1: 34.04/34.04 kN; R2:

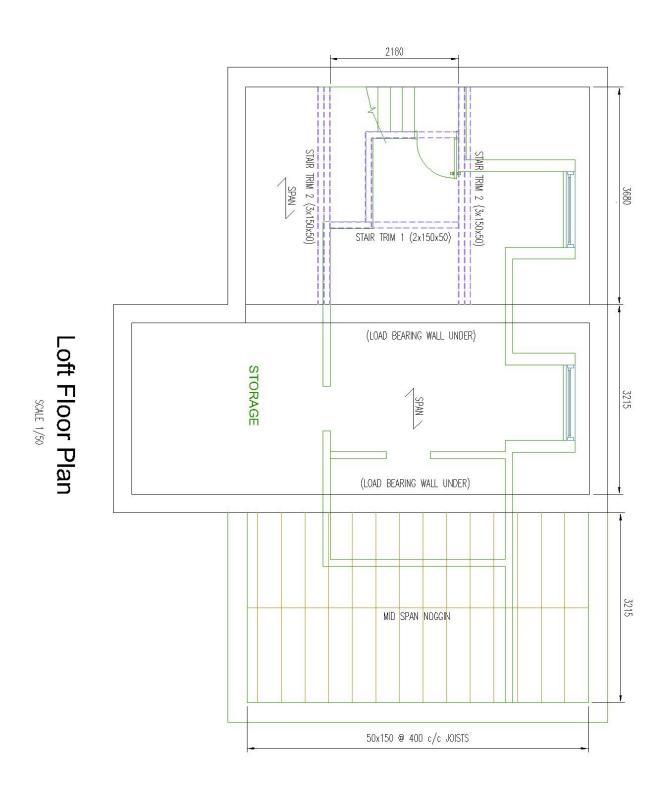
34.04/34.04 kN Use $203 \times 203 \times 46$ UC S355

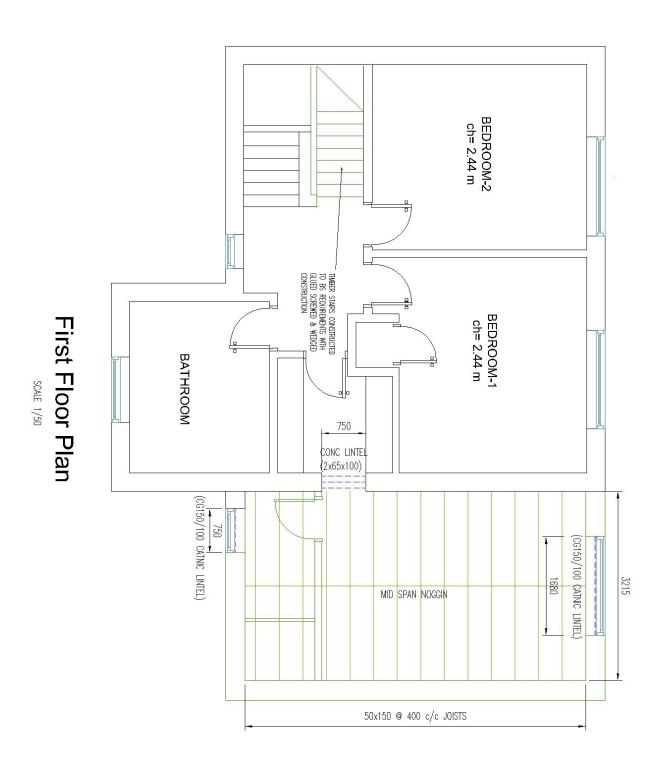
Bearing R1: 10 mm m.s. bearing plate, size $204 \times 250 \text{ mm}$


Bearing R2: As R1

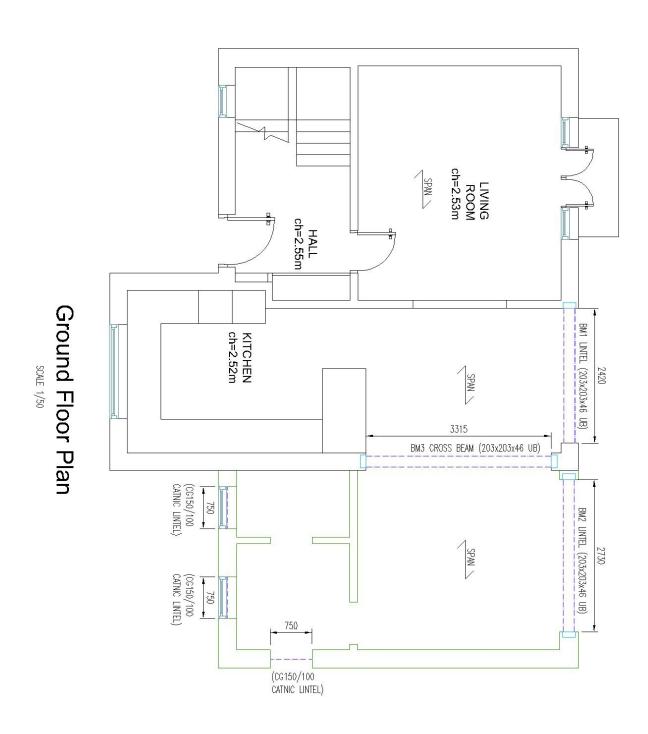
5mm steel plate fillet welded to top flange full length and width if brick wall has a cavity.

CEB Design Group Ltd is a company registered in England & Wales. Registered Address: 13 Clifton Vale, Bristol, BS8 4PT Company Registration Number: 11255709


email: info@bayadesign.co.uk tel: 0800 246 5779


email: info@bayadesign.co.uk

tel: 0800 246 5779



email: info@bayadesign.co.uk tel: 0800 246 5779

email: info@bayadesign.co.uk tel: 0800 246 5779

email: info@bayadesign.co.uk

tel: 0800 246 5779

13 Clifton Vale, Bristol, BS8 4PT

Beam	: Pitch Roof Rafters (@ 400 c/c					Span:	3.25 m.
O D	Load name o.w.	Loading w1 0.6	Start x1 O	Loading w2	End x2 L	R1comp 0.98	R2comp 0.98	Defl. 0.87
U L U D	Pitch roof Live Pitch Roof	0.5*0.4 0.92*0.4	0 0		L L	0.33 <u>0.60</u>	0.33 <u>0.60</u>	0.29 <u>0.53</u>
	Dead		Total load (unfactored): 3.80 kN			1.90	1.90	1.70
				3.15 kN 0.65 kN	1.57 O.33	1.57 0.33	1.41 0.29	

Load types: O:Beam o.w.; U:UDL; Load positions: m. from R1; Load durations: D: Dead; L: Live

Maximum B.M. = 1.54 kNm (unfactored) at 1.63 m. from R1

Maximum S.F. = 1.90 kN (unfactored) at R1

Mid-span deflections: Dead: 1.41 x 10⁸/EI (E in N/mm², I in cm⁴)

Live: 0.29 x 10⁸/EI Total: 1.70 x 10⁸/EI

Timber beam calculation to BS5268 Part 2: 2002 using C24 timber

Use 50 x 175 C24 3.7 kg/m approx

 $z = 255 \text{ cm}^3 \text{ I} = 2,233 \text{ cm}^4$

Timber grade: C24 4 members acting together: $K_8 = 1.1$ [§2.9]

K₃ (loading duration factor) = 1.00 (long term)

 K_7 (depth factor) = $(300/175)^{0.11}$ = 1.06 [§2.10.6] K_8 (load sharing factor) = 1.1 [§2.9,2.10]

 $E = 7,200 \times 1.24 = 8,928 \text{ N/mm}^2 (E_{min}.K_9)$

Bending

Permissible bending stress, $s_{m,adm} = s_{m,g}.K_3.K_7.K_8 = 7.5 \times 1.00 \times 1.06 \times 1.1 = 8.75 \text{ N/mm}^2$

Applied bending stress, $s_{ma} = 1.54 \times 1000/255 = 6.04 \text{ N/mm}^2 \text{ OK}$

Shear

Permissible shear stress, $t_{adm,//} = t_{g,//}.K_3.K_8 = 0.71 \times 1.00 \times 1.1 = 0.78 \text{ N/mm}^2$

Applied shear stress, $t_a = 1.90 \times 1000 \times 3/(2 \times 50 \times 175) = 0.33 \text{ N/mm}^2 \text{ OK}$

Deflection

Bending deflection = $1.70 \times 10^8/(8,928 \times 2,233) = 8.5 \text{ mm}$

Mid-span shear deflection = $1.2M_{\odot}/GA$ (G=E/16) = $1.2 \times 1.54 \times 10^{6}/((8928/16) \times 50 \times 175) = 0.4$

mm Total deflection = 8.5 + 0.4 = 8.9 mm (0.0027 L) <= 0.003L OK

Double up around roof light

email: info@bayadesign.co.uk tel: 0800 246 5779 13 Clifton Vale, Bristol, BS8 4PT

Beam	Beam: Small Dormer Pitch Roof Rafters @ 400 c/c						Span:	Span: 0.84 m.	
	Load name	Loading w1	Start x1	Loading w2	End x2	R1comp	R2comp	Defl.	
O D	O.W.	0.6	0		L	0.25	0.25	0.004	
UL	Pitch roof Live	0.5*0.4	0		L	0.08	0.08	0.001	
U D	Pitch Roof	0.92*0.4	0		L	<u>0.15</u>	<u>0.15</u>	0.002	
	Dead		Total I	oad (unfactore	ed): 0.98 kN	0.49	0.49	0.008	
		Dead/Permanent (unfactored):		0.81 kN	0.41	0.41	0.006		
		Live/	Variable (u	ınfactored):	0.17 kN	0.08	0.08	0.001	

Load types: O:Beam o.w.; U:UDL; Load positions: m. from R1; Load durations: D: Dead; L: Live

Maximum B.M. = 0.103 kNm (unfactored) at 0.42 m. from R1

Maximum S.F. = 0.491 kN (unfactored) at R1

Mid-span deflections: Dead: 0.006 x 10⁸/El (E in N/mm², I in cm⁴)

Live: 0.001 x 10⁸/EI Total: 0.008 x 10⁸/EI

Timber beam calculation to BS5268 Part 2: 2002 using C24 timber

Use 50 x 100 C24 2.1 kg/m approx

 $z = 83.3 \text{ cm}^3 \text{ I} = 417 \text{ cm}^4$

Timber grade: C24 4 members acting together: $K_8 = 1.1$ [§2.9]

K₃ (loading duration factor) = 1.00 (long term)

 K_7 (depth factor) = (300/100)^{0.11} = 1.13 [§2.10.6] K_8 (load sharing factor) = 1.1 [§2.9,2.10]

 $E = 7,200 \times 1.24 = 8,928 \text{ N/mm}^2 (E_{min}.K_9)$

Bending

Permissible bending stress, $s_{m,adm} = s_{m,g} \cdot K_3 \cdot K_7 \cdot K_8 = 7.5 \times 1.00 \times 1.13 \times 1.1 = 9.31 \text{ N/mm}^2$

Applied bending stress, s_{ma} = 0.103 x 1000/83.3 = 1.24 N/mm² OK

Shear

Permissible shear stress, $t_{adm,//} = t_{g,//} \cdot K_3 \cdot K_8 = 0.71 \times 1.00 \times 1.1 = 0.78 \text{ N/mm}^2$

Applied shear stress, $t_a = 0.491 \times 1000 \times 3/(2 \times 50 \times 100) = 0.15 \text{ N/mm}^2 \text{ OK}$

Deflection

Bending deflection = $0.008 \times 10^8/(8,928 \times 417) = 0.2 \text{ mm}$

Mid-span shear deflection = $1.2M_{\odot}/GA$ (G=E/16) = $1.2 \times 0.103 \times 10^{6}/((8928/16) \times 50 \times 100) = 0.0$

mm Total deflection = 0.2 + 0.0 = 0.2 mm (0.0003 L) <= 0.003L OK

email: info@bayadesign.co.uk tel: 0800 246 5779 13 Clifton Vale, Bristol, BS8 4PT

Beam	: Stair Trim 1						Span:	2.18 m.
	Load name	Loading w1	Start x1	Loading w2	End x2	R1comp	R2comp	Defl.
O D	O.W.	0.1	Ο	J	L	O.11	O.11	0.03
UL	Floor live	1.5*2.8/2	0		L	2.29	2.29	0.62
U D	Floor dead	0.25*2.8/2	0		L	0.38	0.38	0.10
R D	Stud	0.4*1.8	0		0.7	0.42	0.08	0.05
	partition		Tota	l load (unfacto	red): 6.06	3.20	2.86	0.80
		Dead/Permanent (unfactored):		nfactored):	1.49 kN	0.91	0.57	0.18
		Live	Live/Variable (unfactored):			2.29	2.29	0.62

Load types: O:Beam o.w; U:UDL; R:Part UDL; Load positions: m. from R1 Load durations: D: Dead; L: Live

Maximum B.M. = 1.60 kNm (unfactored) at 1.05 m. from R1

Maximum S.F. = 3.20 kN (unfactored) at R1

Mid-span deflections: Dead: 0.18 x 108/EI (E in N/mm², I in

cm⁴) Live: 0.62 x 10⁸/EI Total: 0.80 x 10⁸/EI

Timber beam calculation to BS5268 Part 2: 2002 using C24 timber

Use 2no 50 x 150 C24 6.3 kg/m approx

 $z = 375 \text{ cm}^3$ $I = 2,813 \text{ cm}^4$

Timber grade: C24 2 members acting together: $K_8 = 1.1$ [§2.9]

K₃ (loading duration factor) = 1.00 (long term)

 K_7 (depth factor) = $(300/150)^{0.11}$ = 1.08 [§2.10.6] K_8 (load sharing factor) = 1.1 [§2.9,2.10]

 $E = 7,200 \times 1.14 = 8,208 \text{ N/mm}^2 (E_{min}.K_9)$

Bending

Permissible bending stress, $s_{m,adm} = s_{mg}.K_3.K_7.K_8 = 7.5 \times 1.00 \times 1.08 \times 1.1 = 8.90 \text{ N/mm}^2$

Applied bending stress, $s_{m,a} = 1.60 \times 1000/375 = 4.28 \text{ N/mm}^2 \text{ OK}$

Shear

Permissible shear stress, $t_{adm//} = t_{g,//} \cdot K_3 \cdot K_8 = 0.71 \times 1.00 \times 1.1 = 0.78 \text{ N/mm}^2$

Applied shear stress, $t_a = 3.20 \times 1000 \times 3/(2 \times 100 \times 150) = 0.32 \text{ N/mm}^2 \text{ OK}$

Deflection

Bending deflection = $0.799 \times 10^8/(8,208 \times 2,813) = 3.5 \text{ mm}$

Mid-span shear deflection = $1.2M_0/GA$ (G=E/16) = $1.2 \times 1.60 \times 10^6/((8208/16) \times 100 \times 150) = 0.2$

mm Total deflection = $3.5 + 0.2 = 3.7 \text{ mm} (0.0017 \text{ L}) \le 0.003 \text{L OK}$

Use 12mm dia. bolts @ 450mm c/c + connectors.

email: info@bayadesign.co.uk tel: 0800 246 5779 13 Clifton Vale, Bristol, BS8 4PT

Beam:	Stair Trim 2 (Each End)						Span:	3.68 m.
	Load name	Loading w1	Start x1	Loading w2	End x2	R1comp	R2comp	Defl.
O D	O.W.	0.1	0		L	0.18	0.18	0.24
ΡD	Beam: Stair Trim 1 : R1	0.91 [B/F]	2.28			0.35	0.57	0.87
ΡL	Beam: Stair Trim 1 : R1	2.29 [B/F]	2.28			0.87	1.42	2.19
			Total load	d (unfactored):	3.57 kN	1.40	2.17	3.30
		Dead/Permanent (unfactored):			1.28 kN	0.53	0.75	1.11
		Live/Variable (unfactored):			2.29 kN	0.87	1.42	2.19

Load types: O:Beam o.w.; P:Point load; Load positions: m. from R1 Load durations: D: Dead: L: Live

Maximum B.M. = 2.94 kNm (unfactored) at 2.28 m. from R1

Maximum S.F. = -2.17 kN (unfactored) at R2

Mid-span deflections: Dead: 1.11 x 108/EI (E in N/mm², I in cm⁴)

Live: 2.19 x 108/EI Total: 3.30 x 108/EI

Timber beam calculation to BS5268 Part 2: 2002 using C24 timber

Use 3no 50 x 150 C24 9.4 kg/m approx

 $z = 563 \text{ cm}^3$ $I = 4,219 \text{ cm}^4$

Timber grade: C24 3 members acting together: $K_8 = 1.1$ [§2.9]

 K_3 (loading duration factor) = 1.00 (long term)

 K_7 (depth factor) = $(300/150)^{0.11}$ = 1.08 [§2.10.6] K_8 (load sharing factor) = 1.1 [§2.9,2.10]

 $E = 7,200 \text{ x } 1.21 = 8,712 \text{ N/mm}^2 (E_{min}.K_9)$

Bending

Permissible bending stress, $s_{m,adm} = s_{m,g}.K_3.K_7.K_8 = 7.5 \times 1.00 \times 1.08 \times 1.1 = 8.90 \text{ N/mm}^2$ Applied bending stress, $s_{m,a} = 2.94 \times 1000/563 = 5.22 \text{ N/mm}^2 \text{ OK}$

Shear

Permissible shear stress, $t_{adm,//} = t_{g,//}.K_3.K_8 = 0.71 \text{ x } 1.00 \text{ x } 1.1 = 0.78 \text{ N/mm}^2$ Applied shear stress, $t_a = 2.17 \text{ x } 1000 \text{ x } 3/(2 \text{ x } 150 \text{ x } 150) = 0.14 \text{ N/mm}^2 \text{ OK}$

Deflection

Bending deflection = $3.30 \times 10^8/(8,712 \times 4,219) = 9.0 \text{ mm}$

Mid-span shear deflection = $1.2M_0/GA$ (G=E/16) = $1.2 \times 2.41 \times 10^6/((8712/16) \times 150 \times 150) = 0.2 \text{ mm}$

Total deflection = 9.0 + 0.2 = 9.2 mm (0.0025 L) <= 0.003 L OK

Use 12mm dia. bolts @ 450mm c/c + connectors.

email: info@bayadesign.co.uk tel: 0800 246 5779 13 Clifton Vale, Bristol, BS8 4PT

Beam:	Loft Floor Joist	s @ 400 c/c					Span: 3	.215 m.
	Load name	Loading w1	Start x1	Loading w2	End x2	R1comp	R2comp	Defl.
OD	o.w. Floor	0.1	0		L	0.16	0.16	0.14
UL	live Floor	1.5*0.4	Ο		L	0.96	0.96	0.83
UD	dead	0.25*0.4	0		L	<u>0.16</u>	<u>0.16</u>	0.14
			Tota	ıl load (unfactor	ed): 2.57 kN	1.29	1.29	1.11
				unfactored): unfactored):	0.64 kN 1.93 kN	0.32 0.96	0.32 0.96	0.28 0.83

Load types: O:Beam o.w.; U:UDL; Load positions: m. from R1; Load durations: D: Dead; L: Live

Maximum B.M. = 1.03 kNm (unfactored) at 1.61 m. from R1

Maximum S.F. = 1.29 kN (unfactored) at R1

Mid-span deflections: Dead: 0.28 x 108/El (E in N/mm², I in cm⁴)

Live: 0.83 x 10⁸/EI Total: 1.11 x 10⁸/EI

Timber beam calculation to BS5268 Part 2: 2002 using C24 timber

Use 50 x 150 C24 3.2 kg/m approx

 $z = 188 \text{ cm}^3 \text{ I} = 1,406 \text{ cm}^4$

Timber grade: C24 4 members acting together: $K_8 = 1.1$ [§2.9]

K₃ (loading duration factor) = 1.00 (long term)

 K_7 (depth factor) = (300/150)^{0.11} = 1.08 [§2.10.6] K_8 (load sharing factor) = 1.1 [§2.9,2.10]

 $E = 7,200 \times 1.24 = 8,928 \text{ N/mm}^2 (E_{min}.K_9)$

Bending

Permissible bending stress, $s_{m,adm} = s_{mg}.K_3.K_7.K_8 = 7.5 \times 1.00 \times 1.08 \times 1.1 = 8.90 \text{ N/mm}^2$

Applied bending stress, s_{ma} = 1.03 x 1000/188 = 5.51 N/mm² OK

Shear

Permissible shear stress, $t_{adm,//} = t_{g,//}.K_3.K_8 = 0.71 \times 1.00 \times 1.1 = 0.78 \text{ N/mm}^2$

Applied shear stress, $t_a = 1.29 \times 1000 \times 3/(2 \times 50 \times 150) = 0.26 \text{ N/mm}^2 \text{ OK}$

Deflection

Bending deflection = $1.11 \times 10^8/(8,928 \times 1,406) = 8.9 \text{ mm}$

Mid-span shear deflection = $1.2M_{\odot}/GA$ (G=E/16) = $1.2 \times 1.03 \times 10^{6}/((8928/16) \times 50 \times 150) = 0.3$

mm Total deflection = 8.9 + 0.3 = 9.2 mm (0.0028 L) <= 0.003L OK

email: info@bayadesign.co.uk tel: 0800 246 5779 13 Clifton Vale, Bristol, BS8 4PT

Beam	First Floor Jois	ts @ 400 c/c					Span: 3	.215 m.
0.5	Load name	Loading w1	Start x1	Loading w2	End x2	R1comp	R2comp	Defl.
O D	o.w. Floor	0.1	0		L	0.16	0.16	0.14
UL	live Floor	1.5*0.4	0		L	0.96	0.96	0.83
U D	dead	0.25*0.4	0 Tota	l load (unfactor	ed): 2.57 kN	<u>0.16</u> 1.29	<u>0.16</u> 1.29	<u>0.14</u> 1.11
				unfactored): unfactored):	0.64 kN 1.93 kN	0.32 0.96	0.32 0.96	0.28 0.83

Load types: O:Beam o.w.; U:UDL; Load positions: m. from R1; Load durations: D: Dead; L: Live

Maximum B.M. = 1.03 kNm (unfactored) at 1.61 m. from R1

Maximum S.F. = 1.29 kN (unfactored) at R1

Mid-span deflections: Dead: 0.28 x 108/El (E in N/mm², I in cm4)

Live: 0.83 x 10⁸/EI Total: 1.11 x 10⁸/EI

Timber beam calculation to BS5268 Part 2: 2002 using C24 timber

Use 50 x 150 C24 3.2 kg/m approx

 $z = 188 \text{ cm}^3 \text{ I} = 1,406 \text{ cm}^4$

Timber grade: C24 4 members acting together: $K_8 = 1.1$ [§2.9]

K₃ (loading duration factor) = 1.00 (long term)

 K_7 (depth factor) = (300/150)^{0.11} = 1.08 [§2.10.6] K_8 (load sharing factor) = 1.1 [§2.9,2.10]

 $E = 7,200 \times 1.24 = 8,928 \text{ N/mm}^2 (E_{min}.K_9)$

Bending

Permissible bending stress, $s_{m,adm} = s_{mg}.K_3.K_7.K_8 = 7.5 \times 1.00 \times 1.08 \times 1.1 = 8.90 \text{ N/mm}^2$

Applied bending stress, $s_{m,a}$ = 1.03 x 1000/188 = 5.51 N/mm² OK

Shear

Permissible shear stress, $t_{adm,//} = t_{g,//}.K_3.K_8 = 0.71 \times 1.00 \times 1.1 = 0.78 \text{ N/mm}^2$

Applied shear stress, $t_a = 1.29 \times 1000 \times 3/(2 \times 50 \times 150) = 0.26 \text{ N/mm}^2 \text{ OK}$

Deflection

Bending deflection = $1.11 \times 10^8/(8,928 \times 1,406) = 8.9 \text{ mm}$

Mid-span shear deflection = $1.2M_{\odot}/GA$ (G=E/16) = $1.2 \times 1.03 \times 10^{6}/((8928/16) \times 50 \times 150) = 0.3$

mm Total deflection = 8.9 + 0.3 = 9.2 mm (0.0028 L) <= 0.003L OK

email: info@bayadesign.co.uk tel: 0800 246 5779 13 Clifton Vale, Bristol, BS8 4PT

Beam: B	M1 Cross Beam Lintel						Span: 2	2.42 m.
	Load name	Loading w1	Start x1	Loading w2	End x2	R1comp	R2comp	Defl.
O D	O.W.	0.5	0		L	0.61	0.61	0.22
UD	Cavity wall	5.5*2.6	0		L	17.30	17.30	6.39
UL	Pitch roof Live	0.5*3.2/2	0		L	0.97	0.97	0.36
UD	Pitch Roof	0.92*3.2/2	0		L	1.78	1.78	0.66
	Dead		Total lo	ad (unfactored	d): 41.31 kN	20.66	20.66	7.62
		Dead/Peri	manent (ເ	unfactored):	39.38 kN	19.69	19.69	7.27
		Live/\	/ariable (ι	unfactored):	1.94 kN	0.97	0.97	0.36

Load types: O:Beam o.w; U:UDL; Load positions: m. from R1; Load durations: D: Dead; L: Live

Maximum B.M. = 12.50 kNm (unfactored) at 1.21 m. from R1

Maximum S.F. = 20.66 kN (unfactored) at R1

Mid-span deflections: Dead: 7.27 x 108/El (E in N/mm2, I in cm4)

Live: 0.36 x 10⁸/EI Total: 7.62 x 10⁸/EI

Steel beam calculation to BS449 Part 2 using S355 steel

SECTION SIZE: 203 x 203 x 46 UC S355

D=203.2 mm B=203.6 mm t=7.2 mm T=11.0 mm I_x =4,570 cm⁴ r_y =5.13 cm Z_x =450

cm³ Bending

 $L_E/r_v = 2.42 \times 100/5.13 = 47$ D/T = 18.5

Permissible bending stress, p_{bc} = 230 N/mm² (Table 3b)

Actual bending stress, $f_{bc} = 12.50 \times 1000/450 = 27.8 \text{ N/mm}^2 \text{ OK}$

Shear

Permissible shear stress, p_s = 140 N/mm² [Table 11]

Maximum shear in web, $f_s = 20.66 \times 1000/(7.2 \times 203.2) = 14.1 \text{ N/mm}^2 \text{ OK}$

Beam web

Check unstiffened web capacity with load of 20.66 kN [28.a]

Bearing: $p_b = 260 \text{N/mm}^2$ (Table 9); C1 = 68.7 kN [27.e] C2 = 1.87 kN/mm Buckling: $p_c = 194 \text{N/mm}^2$ (Table 17b); C1 = 142 kN; C2 = 1.40 kN/mm

Minimum required stiff bearing length, L_b = Omm Bearing capacity, P_w = C1 + L_b .C2 = 68.7kN \rightarrow OK Buckling capacity, P_x = C1 + L_b .C2 = 142kN

Deflection

Live load deflection = $0.357 \times 1e8/(205,000 \times 4,570) = 0.0 \text{ mm OK}$ Total deflection = $7.62 \times 1e8/(205,000 \times 4,570) = 0.8 \text{ mm (L/2974)}$

Combined bending and shear check (14.c)

Check $(f_{bc}/p_{bc})^2 + (f_s/p_s)^2 = 0.015 + 0.000 = 0.015$ at 1.21 (<=1.25 OK) [14.c]

Bearings

(bearing plate sizing is to BS5950-1:2000)

 $203 \times 203 \times 46$ UC stiff bearing length, $b_1 = t + 1.6r + 2T = 45.5$ mm

Masonry: 7N/mm² brick, class (iv) mortar, normal const/normal mfr, Class 2 bearing Local design strength (factored) = 2.44 x 1.5/3.5 = 1.05N/mm²

(BS5628-1:2005 Table 2a)

email: info@bayadesign.co.uk

tel: 0800 246 5779

13 Clifton Vale, Bristol, BS8 4PT

R1: 204 x 250 x 8 mm S275 bearing plate

Factored reaction = $1.4 \times 19.69 + 1.6 \times 0.97 = 29.1 \text{ kN}$

Factored stress under plate = 29.1 x 1000/204 x 250 = 0.57 N/mm² OK

Bearing plate projection beyond stiff bearing length = (204-45.5)/2 = 79.2mm Required plate thickness \neq $(3 \times 0.57 \times 79.2 \times 79.2/275) = 6.25$ mm: use 8mm Factored bending stress in plate = $0.57 \times 79.2 \times (79.2/2)/(8 \times 8/6) = 168$ N/mm² (p_y=275 N/mm²)

R2 as R1

email: info@bayadesign.co.uk tel: 0800 246 5779 13 Clifton Vale, Bristol, BS8 4PT

Beam: B	M2 Cross Beam Lintel						Span:	2.73 m.
	Load name	Loading w1	Start x1	Loading w2	End x2	R1comp	R2comp	Defl.
O D	O.W.	0.5	0	•	L	0.68	0.68	0.36
UD	Cavity wall	5.5*2.6	0		L	19.52	19.52	10.34
UL	Pitch roof Live	0.5*3.2/2	0		L	1.09	1.09	0.58
UD	Pitch Roof	0.92*3.2/2	0		L	2.01	2.01	1.06
	Dead		Total loa	ad (unfactored	d): 46.61 kN	23.30	23.30	12.35
		Dead/Peri	manent (u	nfactored):	44.42 kN	22.21	22.21	11.77
		Live/\	/ariable (u	nfactored):	2.18 kN	1.09	1.09	0.58

Load types: O:Beam o.w; U:UDL; Load positions: m. from R1; Load durations: D: Dead; L: Live

Maximum B.M. = 15.90 kNm (unfactored) at 1.37 m. from R1

Maximum S.F. = 23.30 kN (unfactored) at R1

Mid-span deflections: Dead: 11.77 x 108/El (E in N/mm2, I in cm4)

Live: 0.58 x 10⁸/EI Total: 12.35 x 10⁸/EI

Steel beam calculation to BS449 Part 2 using S355 steel

SECTION SIZE: 203 x 203 x 46 UC S355

D=203.2 mm B=203.6 mm t=7.2 mm T=11.0 mm I_x =4,570 cm⁴ r_y =5.13 cm Z_x =450

cm³ Bending

 $L_E/r_v = 2.73 \times 100/5.13 = 53$ D/T = 18.5

Permissible bending stress, p_{bc} = 228 N/mm² (Table 3b)

Actual bending stress, $f_{bc} = 15.90 \times 1000/450 = 35.3 \text{ N/mm}^2 \text{ OK}$

Shear

Permissible shear stress, p_s = 140 N/mm² [Table 11]

Maximum shear in web, $f_s = 23.30 \times 1000/(7.2 \times 203.2) = 15.9 \text{ N/mm}^2 \text{ OK}$

Beam web

Check unstiffened web capacity with load of 23.30 kN [28.a]

Bearing: $p_b = 260 \text{N/mm}^2$ (Table 9); C1 = 68.7 kN [27.e] C2 = 1.87 kN/mm Buckling: $p_c = 194 \text{N/mm}^2$ (Table 17b); C1 = 142 kN; C2 = 1.40 kN/mm

Minimum required stiff bearing length, L_b = Omm Bearing capacity, P_w = C1 + L_b .C2 = 68.7kN \neg OK Buckling capacity, P_x = C1 + L_b .C2 = 142kN

Deflection

Live load deflection = $0.579 \times 1e8/(205,000 \times 4,570) = 0.1 \text{ mm OK}$

Total deflection = $12.3 \times 1e8/(205,000 \times 4,570) = 1.3 \text{ mm} (L/2071)$

Combined bending and shear check (14.c)

Check $(f_{bc}/p_{bc})^2 + (f_s/p_s)^2 = 0.024 + 0.000 = 0.024$ at 1.37 (<=1.25 OK) [14.c]

Bearings

(bearing plate sizing is to BS5950-1:2000)

 $203 \times 203 \times 46$ UC stiff bearing length, $b_1 = t + 1.6r + 2T = 45.5$ mm

Masonry: 7N/mm² brick, class (iv) mortar, normal const/normal mfr, Class 2 bearing Local design strength (factored) = 2.44 x 1.5/3.5 = 1.05N/mm²

(BS5628-1:2005 Table 2a)

email: info@bayadesign.co.uk tel: 0800 246 5779 13 Clifton Vale, Bristol, BS8 4PT

R1: 204 x 250 x 8 mm S275 bearing plate

Factored reaction = $1.4 \times 22.21 + 1.6 \times 1.09 = 32.8 \text{ kN}$

Factored stress under plate = 32.8 x 1000/204 x 250 = 0.64 N/mm² OK

Bearing plate projection beyond stiff bearing length = (204-45.5)/2 = 79.2mm Required plate thickness = $(3 \times 0.64 \times 79.2 \times 79.2/275) = 6.64$ mm: use 8mm Factored bending stress in plate = $0.64 \times 79.2 \times (79.2/2)/(8 \times 8/6) = 190$ N/mm² (p_y=275 N/mm²)

R2 as R1

email: info@bayadesign.co.uk

tel: 0800 246 5779

13 Clifton Vale, Bristol, BS8 4PT

Beam:	BM3 Cross Bear	m					Span: 3	.315 m.
	Load name	Loading w1	Start x1	Loading w2	End x2	R1comp	R2comp	Defl.
O D	O.W.	0.9	0	_	L	1.49	1.49	1.4
U D	Cavity	5.5*2.6	0		L	23.70	23.70	22.5
UL	wall Floor	1.5*6.1/2	0		L	7.58	7.58	7.2
U D	live Floor	0.25*6.1/2	0		L	1.26	1.26	1.2
	dead		Total	l load (unfactor	ed): 68.1 kN	34.04	34.04	32.3
		Dead/Po	ermanent (ı	unfactored):	52.9 kN	26.46	26.46	25.1
		Live	/Variable (ı	unfactored):	15.2 kN	7.58	7.58	7.2

Load types: O:Beam o.w; U:UDL; Load positions: m. from R1; Load durations: D: Dead; L: Live

Maximum B.M. = 28.21 kNm (unfactored) at 1.66 m. from R1

Maximum S.F. = 34.0 kN (unfactored) at R1

Mid-span deflections: Dead: 25.1 x 108/El (E in N/mm², I in cm⁴)

Live: 7.2 x 10⁸/EI Total: 32.3 x 10⁸/EI

Steel beam calculation to BS449 Part 2 using S355 steel

SECTION SIZE: 203 x 203 x 46 UC S355

D=203.2 mm B=203.6 mm t=7.2 mm T=11.0 mm I_x =4,570 cm⁴ r_y =5.13 cm Z_x =450

cm³ Bending

 $L_E/r_v = 3.32 \times 100/5.13 = 65$ D/T = 18.5

Permissible bending stress, $p_{bc} = 213 \text{ N/mm}^2 \text{ (Table 3b)}$

Actual bending stress, f_{bc} = 28.2 x 1000/450 = 62.7 N/mm² OK

Shear

Permissible shear stress, p_s = 140 N/mm² [Table 11]

Maximum shear in web, $f_s = 34.0 \times 1000/(7.2 \times 203.2) = 23.3 \text{ N/mm}^2 \text{ OK}$

Beam web

Check unstiffened web capacity with load of 34.0 kN [28.a]

Bearing: $p_b = 260 \text{N/mm}^2$ (Table 9); C1 = 68.7 kN [27.e] C2 = 1.87 kN/mm Buckling: $p_c = 194 \text{N/mm}^2$ (Table 17b); C1 = 142 kN; C2 = 1.40 kN/mm

Minimum required stiff bearing length, L_b = Omm Bearing capacity, P_w = C1 + L_b .C2 = 68.7kN \neg OK Buckling capacity, P_x = C1 + L_b .C2 = 142kN

Deflection

Live load deflection = $7.19 \times 1e8/(205,000 \times 4,570) = 0.8 \text{ mm} (L/4319) \text{ OK}$

Total deflection = $32.3 \times 1e8/(205,000 \times 4,570) = 3.4 \text{ mm} (L/962)$

Combined bending and shear check (14.c)

Check $(f_{bc}/p_{bc})^2 + (f_s/p_s)^2 = 0.087 + 0.000 = 0.087$ at 1.66 (<=1.25 OK) [14.c]

Bearings

(bearing plate sizing is to BS5950-1:2000)

 $203 \times 203 \times 46$ UC stiff bearing length, $b_1 = t + 1.6r + 2T = 45.5$ mm

Masonry: 7N/mm² brick, class (iv) mortar, normal const/normal mfr, Class 2 bearing Local design strength (factored) = 2.44 x 1.5/3.5 = 1.05N/mm²

(BS5628-1:2005 Table 2a)

email: info@bayadesign.co.uk

tel: 0800 246 5779

13 Clifton Vale, Bristol, BS8 4PT

R1: 204 x 250 x 10 mm S275 bearing plate

Factored reaction = $1.4 \times 26.46 + 1.6 \times 7.58 = 49.2 \text{ kN}$

Factored stress under plate = $49.2 \times 1000/204 \times 250 = 0.96 \text{ N/mm}^2 \text{ OK}$

Bearing plate projection beyond stiff bearing length = (204-45.5)/2 = 79.2mm Required plate thickness = $\sqrt{(3 \times 0.96 \times 79.2 \times 79.2/275)} = 8.13$ mm: use 10mm Factored bending stress in plate = $0.96 \times 79.2 \times (79.2/2)/(10 \times 10/6) = 182$ N/mm² (p_v=275 N/mm²)

R2 as R1